范萌
性别:女
职称:副研究员
电话:15811150132
邮箱:fanmeng@aircas.ac.cn
地址:北京市朝阳区大屯路甲20号北

负责主持国家重点研发计划子课题、科学院先导项目子课题专题、国家自然科学面上基金项目、基金青年项目等共15项;作为技术骨干参与国家自然科学基金重点项目2项、国家重点研发计划项目、863项目、973项目、科学院先导项目等国家级课题;以第一/通讯作者发表SCI论文20篇,EI论文13篇,其它排名SCI论文50余篇;以第一发明人授权专利5项,以其他顺位发明人授权专利6项;合作完成专著1部;空天院青促会会员。
参与并完成中国科学院第一颗地球科学卫星(SDGSAT-1)、下一代碳卫星(TanSat-2)卫星载荷论证和设计任务。多次为北京冬奥会、上海进博会、广州亚运、APEC会议、抗日战争胜利70周年阅兵式和杭州G20会议等多个国家重要事件的空气质量提供卫星监测保障。
工作经历:
2020.12-至今 中国科学院空天信息创新研究院 副研究员
2019.7-2020.11 中国科学院空天信息创新研究院 助理研究员
2015.2-2015.8 美国史蒂芬斯理工学院 访问学者
2014.7-2019.6 中国科学院遥感与数字地球研究所 助理研究员

主要从事气溶胶散射与辐射传输、大气成分遥感反演、野火监测预警和大气环境遥感应用方面研究。

1. 2022.12-2026.6,国家重点研发计划项目“面向碳盘点的下一代全球碳监测科学实验卫星”,子课题负责人
2. 2021.12-2023.12,国家重点研发计划项目“下一代碳卫星技术方案研究”,子课题负责人
3. 2017.7-2020.12,国家重点研发计划项目“我国大气污染的慢性健康风险研究”,子课题负责人
4. 2019.1至2022.12,中国科学院先导项目子课题专题“CASEarth小卫星微光-多谱段载荷LED星上定标及在轨测试”,负责人
5. 2024.1至2029.12,国家自然基金面上项目“协同多源卫星观测的棕色碳遥感反演和排放估算研究” ,项目负责人
6. 2019. 1-2022.12, 国家自然基金面上项目“协同多源卫星观测的棕色碳遥感反演和排放估算研究” ,项目负责人
7. 2016.1-2018.12,国家自然基金青年项目“中国地区气溶胶散射对短波近红外CO2遥感探测影响研究”,项目负责人
8. 2020.8-2023.7,黑龙江省应用技术研究与开发计划项目“黑龙江大兴安岭雷击森林火灾预警预报系统研发”,课题负责人
9. 2022.01-2023.12,电网委托项目“基于“星-空-地”立体化输电线路山火监测预警技术”,项目负责人
10. 2018.7-2020.12,电网委托项目“基于新一代极轨和静止卫星的山火小火点遥感监测识别模型研究”,项目负责人


[1]Wang H, Fan M*, Jiao S, et al. An Improved Aerosol Retrieval Algorithm for FY-4A/AGRI Data Based on the GRASP Framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025.
[2]Han Z, Fan M*, Song S, et al. An Improved Hybrid GC-LSTM Framework for Hourly Nowcasting of Ground-Level NO2 Concentrations over Beijing-Tianjin-Hebei Region[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024.
[3]Xu B, Fan M*, Lu X, et al. Light absorption properties and source contributions of black and brown carbon in Guangxi, southern China[J]. Atmospheric Research, 2024, 302: 107317.
[4]Fan M, Chen L, Xiong X, et al. Scattering properties of soot-containing particles and their impact by humidity in 1.6 μm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 134: 91-103.
[5]Fan M, Chen L, Cheng L, et al. Optical properties of chain-like soot with water coatings[J]. Particuology, 2019, 47: 94-103.
[6]Fan M, Chen L F, Li S S, et al. Scattering properties of polluted dust in 1.6-μm wavelength[J]. Chinese Physics B, 2014, 23(10): 104203
[7]Fan M, Chen L, Li S, et al. The effects of morphology and water coating on the optical properties of soot aggregates[J]. Aerosol and Air Quality Research, 2016, 16(5): 1315-1326.
[8]范萌, 陈良富, 李莘莘, 等. 非球形气溶胶粒子短波红外散射特性研究[J]. 物理学报, 2012, 61(20): 260-270.
[9]Zeng Q, Li M, Fan M*, et al. Estimating 1-km PM2. 5 concentrations based on a novel spatiotemporal parallel network STMSPNet in the Beijing-Tianjin-Hebei region[J]. Atmospheric Environment, 2024, 338: 120796.
[10]Zeng Q, Cao Y, Fan M*, et al. Fine particulate matter concentration prediction based on hybrid convolutional network with aggregated local and global spatiotemporal information: A case study in Beijing and Chongqing[J]. Atmospheric Environment, 2024: 120647.
[11]Li Z, Fan M*, Tao J, et al. Impacts of Spatial Resolution and XCO2 Precision on Satellite Capability for CO2 Plumes Detection[J]. Sensors, 2024, 24(6): 1881.
[12]Wang Y, Zhang X, Zhou P, & Fan M*. Empirical Correlation Weighting (ECW) Spatial Interpolation Method for Satellite Aerosol Optical Depth Products by MODIS AOD over Northern China in 2016[J]. Remote Sensing, 2023, 15(18): 4462.
[13]Jiao Q, Fan M*, Tao J, et al. Forest fire patterns and lightning-caused forest fire detection in Heilongjiang Province of China using satellite data[J]. Fire, 2023, 6(4): 166.
[14]Jiao S, Li M, Fan M*, et al. Validation and Analysis of MISR and POLDER Aerosol Products over China[J]. Remote Sensing, 2022, 14(15): 3697.
[15]Chen Y, Fan M*, Li M, et al. Himawari-8/AHI aerosol optical depth detection based on machine learning algorithm[J]. Remote Sensing, 2022, 14(13): 2967.
[16]Chi Y, Fan M, Zhao C, et al. Machine learning-based estimation of ground-level NO2 concentrations over China[J]. Science of The Total Environment, 2022, 807: 150721.
[17]Chi Y, Fan M, Zhao C, et al. Ground-level NO2 concentration estimation based on OMI tropospheric NO2 and its spatiotemporal characteristics in typical regions of China[J]. Atmospheric Research, 2021, 264: 105821.
[18]Yang F, Fan M*, Tao J. An improved method for retrieving aerosol optical depth using gaofen-1 wfv camera data[J]. Remote Sensing, 2021, 13(2): 280.
[19]Wu T, Fan M*, Tao J, et al. Aerosol optical properties over China from RAMS-CMAQ model compared with CALIOP observations[J]. Atmosphere, 2017, 8(10): 201.
